
Mixing heat-bath and Glauber dynamics: damage spreading in the Ising model

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1989 J. Phys. A: Math. Gen. 22 L1081

(http://iopscience.iop.org/0305-4470/22/22/006)

Download details:

IP Address: 129.252.86.83

The article was downloaded on 31/05/2010 at 15:55

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/22/22
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J.  Phys. A: Math. Gen. 22 (1989) L1081-Ll084. Printed in the U K  

LEl'TER TO THE EDITOR 

Mixing heat-bath and Glauber dynamics: damage spreading in 
the Ising model 

A M MariztS and H J Herrmannt 
t Service de Physique Thkorique de Saclay, Laboaratoire de l'lnstitute de Recherche 
Fondamentale du Commissariat a I'Energie Atomique, 91 191 Cif-sur-Yvette Cedex, France 
i. Departamento de Fisica, Universidade Federal do Rio Grande do Norte, 5900 Natal RN, 
Brazil 

Received 8 September 1989 

Abstract. We study the damage spreading in the lsing model, on a square lattice, by a 
Monte Carlo approach, using a general 'f-dynamics' (Osfs 1) which reproduces, for!= 0 
the well known heat-bath dyanmics and f o r f =  1 Glauber dynamics. We find, for initially 
small damage, a critical value f, = 0.50 f 0.03 as the threshold for damage spreading. For 
J , < f s  1 the damage is non-zero only for Tc< T i  T , ( f ) ,  where T, is the usual critical 
temperature and T o ( f )  rises withf like T o ( f )  - T,a (f-f,)" (a =0.83*0.08). For TCs T 
the damage D ( T , f )  seems to satisfy the scaling relation D ( T , f ) -  
l I n ( f - L ) l - ' ~ ( ( l  - J J  T ) / ( f - . f , ) " ) .  

One of the most puzzling aspects of the dynamics of statistical models, is the so-called 
damage spreading. It consists in studying the time evolution of two configurations of 
the model, submitted to the same microscopic dynamics, measuring the Hamming 
distance (or damage) between the two configurations (=fraction of sites that are in 
different states in the two configurations). 

In general, when the temperature goes from zero to infinity, we observe different 
behaviours: regions where the damage is hindered (frozen phases) and others where 
it spreads (chaotic phases). In recent years, several investions [l-181 have been made, 
for the particular case of the Ising model, in order to understand the relevant features 
of the frozen-chaotic phase transition. It is known that the details of the microscopic 
dynamics used to obtain the time evolution of the configurations plays a major role 
for the phenomenon. For Glauber and Metropolis dynamics, usually, the chaotic phase 
is at high temperatures [3,4,6-81, while in the heat-bath dynamics [ l ,  2 , 5 ] ,  this phase 
(if it exists) is at low temperatures. 

Glauber and heat-bath dynamics, which in terms of probabilities give identical 
results for the evolution of a single configuration, have been found to behave differently 
as far as damage spreading (i.e. the compared evolution of two configurations) is 
concerned (compare [l] and [3]). To investigate this dependence of the damage 
spreading on the microscopic dynamics we study, in  this letter, the zero-field ferromag- 
netic Ising model on a square lattice, using a general 'f-dynamics' (Osfs 1) that 
continuously interpolates between heat-bath (f = 0) and Glauber (f = 1) dynamics. 

To define this dynamics, we consider, at a time t, the local field hi (  t )  acting on site 
i (Si = *l) and an associated probaiblity p i ( ? ) ,  given by 

p i ( ? )  = (1 +e-*",('))-' (1) 
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with 

where the j are the nearest-neighbouring sites of site i. 

O s  .rr , ( t )  s 1, and apply the following rule: 
To determine the new value of S,, at a time t +  1, we select a random number 

if T,( t )  s p : (  t )  

i f p : ( t ) <  . r r , ( t ) sP : ( t )+[ l  -p , ( t ) l  ( 3 )  
i f p K t ) + [ l  - p , ( O l <  

with 

We see that the interval [0, 13 is divided in three pieces; the central one having a 
length 1-p , ( t )  and the others together a length pi(t). Depending on whether the 
random number falls in the central piece or any of the other ones, the new value of 
S, is set to be -1 or +1 respectively. If f = O  the third piece has zero length and we 
recover the heat-bath dyanamics. I f f =  1 the first or the third piece have zero length 
depending on whether S , ( f )  have values +1 or -1 respectively, and the f-dynamics 
reproduces Glauber. 

To study the damage spreading, we create, at time t = 0, two configurations of the 
model {Sf} and {Sf}, and let them evolve following the above dynamics, using at each 
time, for both configurations, the same random number. The Hamming distance, or 
damage, is given by 

where N is the total number of sites. 
We have calculated D( t )  numerically, on a 40 x 40 square lattice. First we thermalise 

the configuration {Sf }  over 800 times steps per spin and, at the time t = 0, we create 
the configuration {Sf }  as S:=Sf, with the exception of the central site, where 
S," = -S,". Therefore the initial damage is D(0)  = 1/ N. Next we let the damage evolve 
during a relaxation time of 800 time steps per spin and, after this, we take the time 
average of the damage over 1600 time steps per spin. We repeat these operations, 
using different sequences of random numbers for different samples until we have at 
least 80 samples where the damage is different from zero. Finally, we take the average 
over those samples to obtain the final damage. 

We have observed the following. 
(i) There is a threshold value o f f  (fc = 0.50* 0.03) for damage spreading. 
(ii) For f c < f <  1 ,  the damage is non-zero only for Tc< T <  T o ( f ) ,  i.e. when the 

temperature T goes from zero to infinity, the model presents three phases: frozen 
( O s  T s  T J ,  chaotic ( Tc< T <  T o ( f ) )  and frozen ( T o ( f )  S T )  (see figure 1). 

(iii) Near T, and T o ( f )  strong fluctuations appear in particular for f close to fc, 
that make a precise measurement of the damage difficult. Nevertheless, we have been 
able to obtain an expression for T , ( f )  (within of the limits of our statistical error bars) 
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Figure 1.  Average damage D( T,.f) against T J T  (0, 0, A, x, 0 mean respectivelyf= 1 ,  
0.9, 0.8, 0.7, 0.6). 
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that is given by 1 - T c / T o ( f )  =A(f-f,)", where A =  1.8k0.15 and LY =0.83*0.08 (see 
figure 2 ) .  

(iv) We tried to obtain a scaling law for the damage near T, and T o ( f ) .  Near T, 
the best scaling form that we found was D(T,f)-Iln(f-fC)l-'9(X), where X = 
( 1  - Tc/ T ) / ( f - f c ) "  and 9 ( X )  is a scaling function (figure 2 ( a ) ) .  The best power-law 
scaling, given by D( T , f ) - ( f - f c ) P 9 , ( X )  ( P  =0.76*0.08) does not show a data 
collapse as good as the one found with a logarithm (see figure 2 ( b ) ) .  Near T o ( f )  the 
damage is of the same order as the statistical error close to fc and therefore we were 
not able to obtain a satisfactory scaling law. 

These results show that the transition from heat-bath dynamics to Glauber dynamics 
is not simple; in fact, at the finite value fc=0.5 one has a critical point between a 
Glauber-like behaviour in which a chaotic phase exists and a heat-bath-like behaviour 
without such a phase. Around the critical point fc we found scaling laws. 

It should be interesting to study, with more numerical precision, the damage near 
T,( f ) ,  in order to obtain the critical behaviour associated with this dynamical phase 
transition, and also to study this model in three dimensions and in the presence of an 
external magnetic field. 

One of us (AMM) is grateful to CAPES for financial support. 
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